A repeating fast radio burst source localized to a nearby spiral galaxy – Nature.com


Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4,5,6,7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9,10,11,12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.

Data availability

The datasets generated from the EVN observations and analysed in this study are available at the Public EVN Data Archive (http://www.jive.eu/select-experiment) under the experiment code EM135C. The datasets generated from the Gemini observations are available at the Public Gemini Observatory Archive (https://archive.gemini.edu) with Program ID GN-2019A-DD-110.

Code availability

The codes used to analyse the data are available at the following sites: AIPS (http://www.aips.nrao.edu/index.shtml), CASA (https://casa.nrao.edu), Difmap (ftp://ftp.astro.caltech.edu/pub/difmap/difmap.html), IRAF (http://ast.noao.edu/data/software), PRESTO (https://github.com/scottransom/presto), and PSRCHIVE (http://psrchive.sourceforge.net). This research made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com, Astropy, a community-developed core Python package for Astronomy77, and Matplotlib78.


  1. 1.

    Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

  2. 2.

    Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

  3. 3.

    Platts, E. et al. A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019).

  4. 4.

    Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

  5. 5.

    CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).

  6. 6.

    The CHIME/FRB Collaboration. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. 885, L24 (2019).

  7. 7.

    Kumar, P. et al. Faint repetitions from a bright fast radio burst source. Preprint at https://arxiv.org/abs/1908.10026 (2019).

  8. 8.

    Petroff, E. et al. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Aust. 33, e045 (2016).

  9. 9.

    Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

  10. 10.

    Ravi, V. et al. A fast radio burst localized to a massive galaxy. Nature 572, 352–354 (2019).

  11. 11.

    Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

  12. 12.

    Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 366, 231–234 (2019).

  13. 13.

    Lazarus, P. et al. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend. Mon. Not. R. Astron. Soc. 458, 868–880 (2016).

  14. 14.

    Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. 834, L8 (2017).

  15. 15.

    Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. 219, 12 (2015).

  16. 16.

    Wright, E. L. A cosmology calculator for the world wide web. Publ. Astron. Soc. Pacif. 118, 1711–1715 (2006).

  17. 17.

    Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. 834, L7 (2017).

  18. 18.

    Gusev, A. S. Hierarchy and size distribution function of star formation regions in the spiral galaxy NGC 628. Mon. Not. R. Astron. Soc. 442, 3711–3721 (2014).

  19. 19.

    Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

  20. 20.

    Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017).

  21. 21.

    Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

  22. 22.

    Margalit, B. & Metzger, B. D. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion-electron wind nebula. Astrophys. J. 868, L4 (2018).

  23. 23.

    Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

  24. 24.

    Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron. 3, 928–931 (2019).

  25. 25.

    Margalit, B., Berger, E. & Metzger, B. D. Fast radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).

  26. 26.

    Mahony, E. K. et al. A search for the host galaxy of FRB 171020. Astrophys. J. 867, L10 (2018).

  27. 27.

    Bhandari, S. et al. The survey for pulsars and extragalactic radio bursts. II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

  28. 28.

    Gourdji, K. et al. A sample of low-energy bursts from FRB 121102. Astrophys. J. 877, L19 (2019).

  29. 29.

    Lyutikov, M. Fast radio bursts’ emission mechanism: implication from localization. Astrophys. J. 838, L13 (2017).

  30. 30.

    Scholz, P. et al. The repeating fast radio burst FRB 121102: multi-wavelength observations and additional bursts. Astrophys. J. 833, 177 (2016).

  31. 31.

    Scholz, P. et al. Simultaneous X-ray, gamma-ray, and radio observations of the repeating fast radio burst FRB 121102. Astrophys. J. 846, 80 (2017).

  32. 32.

    Hardy, L. K. et al. A search for optical bursts from the repeating fast radio burst FRB 121102. Mon. Not. R. Astron. Soc. 472, 2800–2807 (2017).

  33. 33.

    MAGIC Collaboration. Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes. Mon. Not. R. Astron. Soc. 481, 2479–2486 (2018).

  34. 34.

    Cordes, J. M. & McLaughlin, M. A. Searches for fast radio transients. Astrophys. J. 596, 1142–1154 (2003).

  35. 35.

    CHIME/FRB Collaboration. The CHIME fast radio burst project: system overview. Astrophys. J. 863, 48 (2018).

  36. 36.

    Keimpema, A. et al. The SFXC software correlator for very long baseline interferometry: algorithms and implementation. Exp. Astron. 39, 259–279 (2015).

  37. 37.

    Greisen, E. W. AIPS, the VLA, and the VLBA. In Information Handling in Astronomy. Historical Vistas (ed. Heck, A.) Vol. 285, 109 (Astrophysics and Space Science Library, 2003).

  38. 38.

    Shepherd, M. C., Pearson, T. J. & Taylor, G. B. DIFMAP: an interactive program for synthesis imaging. Bull. Am. Astron. Soc. 26, 987–989 (1994).

  39. 39.

    Chatterjee, S. et al. Pulsar parallaxes at 5 GHz with the Very Long Baseline Array. Astrophys. J. 604, 339–345 (2004).

  40. 40.

    Pradel, N., Charlot, P. & Lestrade, J. F. Astrometric accuracy of phase-referenced observations with the VLBA and EVN. Astron. Astrophys. 452, 1099–1106 (2006).

  41. 41.

    Kirsten, F., Vlemmings, W., Campbell, R. M., Kramer, M. & Chatterjee, S. Revisiting the birth locations of pulsars B1929+10, B2020+28, and B2021+51. Astron. Astrophys. 577, A111 (2015).

  42. 42.

    Ransom, S. M. New Search Techniques for Binary Pulsars. PhD thesis, Harvard Univ. https://ui.adsabs.harvard.edu/abs/2001PhDT…….123R/abstract (2001).

  43. 43.

    Michilli, D. et al. Single-pulse classifier for the LOFAR tied-array all-sky survey. Mon. Not. R. Astron. Soc. 480, 3457–3467 (2018).

  44. 44.

    Michilli, D. & Hessels, J. W. T. SpS: Single-pulse Searcher. Astrophys. Source Code Library 1806. 013 (2018).

  45. 45.

    Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).

  46. 46.

    Hessels, J. W. T. et al. FRB 121102 bursts show complex time-frequency structure. Astrophys. J. 876, L23 (2019).

  47. 47.

    Law, C. J. et al. A multi-telescope campaign on FRB 121102: implications for the FRB population. Astrophys. J. 850, 76 (2017).

  48. 48.

    Cordes, J. M., Weisberg, J. M. & Boriakoff, V. Small-scale electron density turbulence in the interstellar medium. Astrophys. J. 288, 221–247 (1985).

  49. 49.

    Rickett, B. J. Radio propagation through the turbulent interstellar plasma. Annu. Rev. Astron. Astrophys. 28, 561–605 (1990).

  50. 50.

    Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  51. 51.

    Fomalont, E. B. & Perley, R. A. Calibration and editing. In Synthesis Imaging in Radio Astronomy II (eds Taylor, G. B., Carilli, C. L. & Perley, R. A.) Vol. 180, 79 (Astronomical Society of the Pacific Conference Series, 1999).

  52. 52.

    Thompson, A. R. Fundamentals of Radio Interferometry. In Synthesis Imaging in Radio Astronomy II (eds Taylor, G. B., Carilli, C. L. & Perley, R. A.) Vol. 180, 11 (Astronomical Society of the Pacific Conference Series, 1999).

  53. 53.

    Natarajan, I. et al. Resolving the blazar CGRaBS J0809+5341 in the presence of telescope systematics. Mon. Not. R. Astron. Soc. 464, 4306–4317 (2017).

  54. 54.

    Law, C. J. et al. realfast: real-time, commensal fast transient surveys with the Very Large Array. Astrophys. J. Suppl. 236, 8 (2018).

  55. 55.

    Condon, J. J. et al. The NRAO VLA sky survey. Astron. J. 115, 1693–1716 (1998).

  56. 56.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

  57. 57.

    Gaia Collaboration. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  58. 58.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  59. 59.

    Jarrett, T. H. et al. Galaxy and Mass Assembly (GAMA): exploring the WISE web in G12. Astrophys. J. 836, 182 (2017).

  60. 60.

    Kennicutt, J., Robert, C., Tamblyn, P. & Congdon, C. E. Past and future star formation in disk galaxies. Astrophys. J. 435, 22 (1994).

  61. 61.

    Dopita, M. A., Kewley, L. J., Sutherland, R. S. & Nicholls, D. C. Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic. Astrophys. Space Sci. 361, 61 (2016).

  62. 62.

    Faber, S. M. et al. Galaxy luminosity functions to z ~ 1 from DEEP2 and COMBO-17: implications for red galaxy formation. Astrophys. J. 665, 265–294 (2007).

  63. 63.

    Blanton, M. R. et al. The galaxy luminosity function and luminosity density at redshift z = 0.1. Astrophys. J. 592, 819–838 (2003).

  64. 64.

    Zhang, Y.-C. & Yang, X.-H. Size distribution of galaxies in SDSS DR7: weak dependence on halo environment. Res. Astron. Astrophys. 19, 006 (2019).

  65. 65.

    Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB Distances. Astrophys. J. 835, 29 (2017).

  66. 66.

    Yamasaki, S. & Totani, T. The galactic halo contribution to the dispersion measure of extragalactic fast radio bursts. Preprint at https://arxiv.org/abs/1909.00849 (2019).

  67. 67.

    Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 348, 999–1008 (2004).

  68. 68.

    Li, Y., Zhang, B., Nagamine, K. & Shi, J. The FRB 121102 host is atypical among nearby fast radio bursts. Astrophys. J. 884, L26 (2019).

  69. 69.

    Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014).

  70. 70.

    Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

  71. 71.

    Zhang, B. A “cosmic comb” model of fast radio bursts. Astrophys. J. 836, L32 (2017).

  72. 72.

    Zhang, B. FRB 121102: a repeatedly combed neutron star by a nearby low-luminosity accreting supermassive black hole. Astrophys. J. 854, L21 (2018).

  73. 73.

    Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A. & Trevena, J. Theoretical modeling of starburst galaxies. Astrophys. J. 556, 121–140 (2001).

  74. 74.

    Kewley, L. J. & Dopita, M. A. Using strong lines to estimate abundances in extragalactic H II regions and starburst galaxies. Astrophys. J. Suppl. 142, 35–52 (2002).

  75. 75.

    Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

  76. 76.

    Loewenstein, M., Mushotzky, R. F., Angelini, L., Arnaud, K. A. & Quataert, E. Chandra limits on X-ray emission associated with the supermassive black holes in three giant elliptical galaxies. Astrophys. J. 555, L21–L24 (2001).

  77. 77.

    Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  78. 78.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

Download references


We thank W. J. G. de Blok, L. Connor, N. Maddox, E. Petroff, H. Vedantham and J. Weisberg for discussions. The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from the following EVN project code: EM135. This work was also based on simultaneous EVN and PSRIX data recording observations with the 100-m telescope of the Max-Planck-Institut für Radioastronomie at Effelsberg, and we thank the local staff for this arrangement. Our work is also based on observations obtained at the Gemini Observatory (programme DT-2019A-135), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). B.M. acknowledges support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grants AYA2016-76012-C3-1-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia “María de Maeztu”). J.W.T.H. acknowledges funding from an NWO Vidi fellowship and from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Starting Grant agreement number 337062 (“DRAGNET”). M.B. is supported by an FRQNT Doctoral Research Award, Physics Department Excellence Award and a Mitacs Globalink Graduate Fellowship. R.K. is supported by ERC synergy grant number 610058 (“BlackHoleCam”). V.M.K. holds the Lorne Trottier Chair in Astrophysics and Cosmology, a Canada Research Chair and the R. Howard Webster Foundation Fellowship of CIFAR. V.M.K. receives support from an NSERC Discovery Grant and Herzberg Award, and from the FRQNT Centre de Recherche en Astrophysique du Québec. C.J.L. acknowledges support from NSF grant 1611606. D.M. is a Banting Fellow. K.A. acknowledges support from NSF grant AAG-1714897. B.A. is supported by a Chalk-Rowles Fellowship. A.M.A. acknowledges funding from an NWO Veni fellowship. S.B.-S. acknowledges support from NSF grant AAG-1714897. F.K. thanks the Swedish Research Council. U.-L.P. receives support from the Ontario Research Fund Research Excellence Program (ORF-RE), NSERC, the Simons Foundation, Thoth Technology Inc., and the Alexander von Humboldt Foundation. Z.P. is supported by a Schulich Graduate Fellowship. P.S. is a Dunlap Fellow and an NSERC Postdoctoral Fellow. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. K.M.S. is supported by an NSERC Discovery Grant, an Ontario Early Researcher Award, and a CIFAR fellowship. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from National Science Foundation (NSF) Physics Frontiers Center award number 1430284. FRB research at the University of British Columbia (UBC) is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research. The CHIME/FRB baseband system is funded in part by a Canada Foundation for Innovation John R. Evans Leaders Fund award to I.H.S. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Astronomical Image Processing System (AIPS) is a software package produced and maintained by NRAO. The Common Astronomy Software Applications (CASA) package is software produced and maintained by NRAO.

Author information


  1. Joint Institute for VLBI ERIC (JIVE), Dwingeloo, The Netherlands
    • B. Marcote
    • , Z. Paragi
    •  & A. Keimpema
  2. ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands
    • K. Nimmo
    • , J. W. T. Hessels
    •  & C. G. Bassa
  3. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands
    • K. Nimmo
    • , J. W. T. Hessels
    • , A. M. Archibald
    •  & K. Gourdji
  4. Department of Physics, McGill University, Montréal, Québec, Canada
    • S. P. Tendulkar
    • , M. Bhardwaj
    • , V. M. Kaspi
    • , D. Michilli
    • , B. Andersen
    • , P. J. Boyle
    • , C. Brar
    • , P. Chawla
    • , M. Dobbs
    • , E. Fonseca
    • , A. Josephy
    • , A. Naidu
    • , C. Patel
    • , Z. Pleunis
    • , S. R. Siegel
    •  & A. V. Zwaniga
  5. McGill Space Institute, McGill University, Montréal, Québec, Canada
    • S. P. Tendulkar
    • , M. Bhardwaj
    • , V. M. Kaspi
    • , D. Michilli
    • , B. Andersen
    • , P. J. Boyle
    • , C. Brar
    • , P. Chawla
    • , M. Dobbs
    • , E. Fonseca
    • , A. Josephy
    • , A. Naidu
    • , C. Patel
    • , Z. Pleunis
    • , S. R. Siegel
    •  & A. V. Zwaniga
  6. Max-Planck-Institut für Radioastronomie, Bonn, Germany
    • R. Karuppusamy
  7. Department of Astronomy and Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA, USA
    • C. J. Law
  8. Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA
    • K. Aggarwal
    •  & S. Burke-Spolaor
  9. Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV, USA
    • K. Aggarwal
    • , K. Bandura
    •  & S. Burke-Spolaor
  10. School of Mathematics, Physics, and Statistics, University of Newcastle, Newcastle upon Tyne, UK
    • A. M. Archibald
  11. Lane Department of Computer Science and Electrical Engineering, Morgantown, WV, USA
    • K. Bandura
  12. Academia Sinica Institute of Astronomy and Astrophysics, Hilo, HI, USA
    • G. C. Bower
  13. National Radio Astronomy Observatory, Socorro, NM, USA
    • B. J. Butler
    • , P. Demorest
    •  & J. D. Linford
  14. Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada
    • T. Cassanelli
    • , C. Ng
    • , U.-L. Pen
    • , M. Rahman
    • , A. Renard
    • , P. Scholz
    •  & K. Vanderlinde
  15. Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada
    • T. Cassanelli
    •  & K. Vanderlinde
  16. Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
    • U. Giri
    • , D. Lang
    • , U.-L. Pen
    • , M. Rafiei-Ravandi
    •  & K. M. Smith
  17. Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
    • U. Giri
  18. Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
    • D. C. Good
    •  & I. H. Stairs
  19. Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
    • A. Yu. Kirichenko
  20. Ioffe Institute, St Petersburg, Russia
    • A. Yu. Kirichenko
  21. Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden
    • F. Kirsten
  22. Dominion Radio Astrophysical Observatory, Herzberg Astronomy and Astrophysics Research Centre, National Research Council Canada, Penticton, British Columbia, Canada
    • T. L. Landecker
    •  & P. Scholz
  23. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
    • T. J. W. Lazio
  24. Department of Physics, University of Toronto, Toronto, Ontario, Canada
    • D. Z. Li
  25. Canadian Institute for Theoretical Astrophysics, Toronto, Ontario, Canada
    • D. Z. Li
    • , H.-H. Lin
    •  & U.-L. Pen
  26. MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
    • K. Masui
    •  & J. Mena-Parra
  27. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
    • K. Masui
  28. Canadian Institute for Advanced Research, CIFAR Program in Gravitation and Cosmology, Toronto, Ontario, Canada
    • U.-L. Pen


  1. Search for B. Marcote in:
  2. Search for K. Nimmo in:
  3. Search for J. W. T. Hessels in:
  4. Search for S. P. Tendulkar in:
  5. Search for C. G. Bassa in:
  6. Search for Z. Paragi in:
  7. Search for A. Keimpema in:
  8. Search for M. Bhardwaj in:
  9. Search for R. Karuppusamy in:
  10. Search for V. M. Kaspi in:
  11. Search for C. J. Law in:
  12. Search for D. Michilli in:
  13. Search for K. Aggarwal in:
  14. Search for B. Andersen in:
  15. Search for A. M. Archibald in:
  16. Search for K. Bandura in:
  17. Search for G. C. Bower in:
  18. Search for P. J. Boyle in:
  19. Search for C. Brar in:
  20. Search for S. Burke-Spolaor in:
  21. Search for B. J. Butler in:
  22. Search for T. Cassanelli in:
  23. Search for P. Chawla in:
  24. Search for P. Demorest in:
  25. Search for M. Dobbs in:
  26. Search for E. Fonseca in:
  27. Search for U. Giri in:
  28. Search for D. C. Good in:
  29. Search for K. Gourdji in:
  30. Search for A. Josephy in:
  31. Search for A. Yu. Kirichenko in:
  32. Search for F. Kirsten in:
  33. Search for T. L. Landecker in:
  34. Search for D. Lang in:
  35. Search for T. J. W. Lazio in:
  36. Search for D. Z. Li in:
  37. Search for H.-H. Lin in:
  38. Search for J. D. Linford in:
  39. Search for K. Masui in:
  40. Search for J. Mena-Parra in:
  41. Search for A. Naidu in:
  42. Search for C. Ng in:
  43. Search for C. Patel in:
  44. Search for U.-L. Pen in:
  45. Search for Z. Pleunis in:
  46. Search for M. Rafiei-Ravandi in:
  47. Search for M. Rahman in:
  48. Search for A. Renard in:
  49. Search for P. Scholz in:
  50. Search for S. R. Siegel in:
  51. Search for K. M. Smith in:
  52. Search for I. H. Stairs in:
  53. Search for K. Vanderlinde in:
  54. Search for A. V. Zwaniga in:


B.M. is the Principal Investigator of the EVN observing programme and led the radio imaging analysis of those data. K.N. discovered the radio bursts and led the time-domain analysis. J.W.T.H. guided the time-domain analysis and made major contributions to the writing of the manuscript. S.P.T. and C.G.B. led the optical imaging and spectroscopic analyses. Z.P. performed an independent analysis of the EVN data, and in previous years pioneered the development of the EVN’s capabilities for fast transient research. A.K. created the software used to correlate the EVN baseband data. M.B. analysed the chance coincidence probability. R.K. arranged the Effelsberg PSRIX observations. C.J.L. analysed the VLA imaging data. D.M. determined the CHIME/FRB baseband position. V.M.K. had an important coordination role, enabling these results to be gathered. All other co-authors contributed to the CHIME/FRB discovery of the source or the interpretation of the analysis results and the final version of the manuscript.

Corresponding author

Correspondence to
J. W. T. Hessels.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Matthew Bailes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Burst detections in Effelsberg PSRIX data.

Band-averaged profiles and dynamic spectra of the four bursts, as detected in the PSRIX data (a, b, c and d). A 20-ms time window is shown surrounding the burst centre. Each burst was fitted with a Gaussian distribution to determine the FWHM duration, which is represented by the cyan bars. The lighter cyan encloses the 2σ region. The solid white lines are frequency channels that have been removed from the data due to either RFI or subband edges, indicated by the red and blue markers, respectively. For visual clarity, bursts B1, B2 and B3 (a, b and c) are downsampled in both time and frequency by a factor of two. The RFI excision was done before downsampling. The time and frequency resolution used for plotting is shown in the top right of each panel.

Extended Data Fig. 2 VLA field image.

Field of the continuum radio emission around FRB 180916.J0158+65 as seen by the VLA at 1.6 GHz with a bandwidth of 0.6 GHz. The position of FRB 180916.J0158+65 is marked by the red cross at the centre of the image. Contours start at the 3σ r.m.s. noise level of 18 μJy per beam and increase by factors of (sqrt{2}). The synthesized beam is represented by the grey ellipse in the bottom-left corner. Note that a faint source is detected at around 6 arcsec north of FRB 180916.J0158+65, but its separation is significant (>3σ confidence level) and we thus conclude that it is not associated with FRB 180916.J0158+65.

Extended Data Fig. 3 Full field of view of the Gemini r′ filter.

The position of FRB 180916.J0158+65 is highlighted by the red cross. Note that the spiral galaxy associated with FRB 180916.J0158+65 is the only clearly visible galaxy in the field.

Extended Data Fig. 4 Zoomed-in images at the position of FRB 180916.J0158+65.

Gemini data at r′ (a) and g′ bands (b). The position of FRB 180916.J0158+65 is highlighted by the white cross. The uncertainty in its position is smaller than the resolution of these images. The dashed lines represent the orientation and placement of the 1.5-arcsec spectroscopic slit used to obtain the optical spectra. Note that the slit does not cover the full star-forming region but the region centred on FRB 180916.J0158+65, and that the whole region is strongly affected by extinction (E(gr) = 1.73 ± 0.09).

Extended Data Fig. 5 Host galaxy source of ionization.

Emission line flux ratios of [N ii]/Hα (left) and [S ii]/Hα (right) plotted against [O iii]/Hβ. The greyscale distribution represents the SDSS DR12 sample15 of 240,000 galaxies that display significant emission lines (>5σ), where the solid and dotted grey lines denote the demarcations between star-forming and AGN-dominated galaxies73,74,75. The host galaxies of FRB 121102 and FRB 180924 (shown by the green and red circles, respectively, where error bars show the 1σ uncertainty) are consistent with star-forming and AGN-dominated galaxies, respectively11,17. Though the Gemini-North spectrum of FRB 180916.J0158+65 does not cover the [O iii] and Hβ lines, its [N ii]/Hα and [S ii]/Hα line ratios are broadly consistent with a star-formation-dominated galaxy (represented by the vertical lines and the 1σ region as linewidth).

Extended Data Fig. 6 Burst brightness and arrival times.

Burst S/N as a function of time during our 2019 June 19 observation of FRB 180916.J0158+65. The grey bars represent scans of the FRB 180916.J0158+65 field. The red crosses represent the four bursts (from left to right: B1, B2, B3, B4). The black dashed line indicates the detection threshold of our search in the pulsar-backend data (S/N = 7).

Extended Data Fig. 7 Auto-correlation function and scintillation bandwidth of brightest burst, B4.

a, The ACF of the spectrum of the bright, narrow burst component of burst B4. b, The ACF for lags between −1.016 MHz and +1.016 MHz. The zero-lag noise spike has been removed from the ACF. A Lorentzian fit is shown in green in b. The black vertical dashed line represents the scintillation bandwidth, defined as the half width at half maximum of the Lorentzian fit.

Extended Data Fig. 8 Redshift-cumulated probability of chance alignment coincidence.

Probability of a chance alignment between FRB 180916.J0158+65 and twice the median half-light radius of any galaxy with magnitude MB ≤ −16 (orange region) or with a dwarf galaxy like the host of FRB 121102 (blue region) as a function of redshift. The horizontal grey line represents the 1% probability threshold. At the redshift of the host galaxy, z = 0.0337 (vertical dashed red line), the chance coincidence probability is P 0.1%, and at the maximum possible redshift of about 0.11 derived from the observed DM the probability is <1% (vertical dashed black line).

Extended Data Table 1 FRB 180916.J0158+65 burst properties as detected in both the Effelsberg PSRIX data and the Effelsberg auto-correlation data
Extended Data Table 2 Properties of the spectral emission lines

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcote, B., Nimmo, K., Hessels, J.W.T. et al. A repeating fast radio burst source localized to a nearby spiral galaxy.
Nature (2020) doi: 10.1038/s41586-019-1866-z

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Read More

Add Comment